

GRUPPO NAZIONALE DI GEOFISICA DELLA TERRA SOLIDA

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

F. Bozzano¹, <u>M. Fiorucci¹</u>, L. Lenti², A. Mangiola³, A. Micheli³, S. Martino¹, S. Rivellino¹, E. Tucci¹

 ¹ Department of Earth Sciences and Research Center for the Geological Risks (CERI) of the University of Rome «Sapienza»- Rome, Italy.
² Université Paris-Est LCPC/Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)/ Departement GERS- Champs sur Marne, France.
³ Anas S.p.A. – Direzione Progettazione e Realizzazione Lavori. Roma.

matteo.fiorucci@uniroma1.it

AIM OF THE WORK:

- Experiment for evaluating the effects induced by pile driving
- in alluvial soil (change in physical properties, seismic waves velocity and densification of soil).
- Availability of a test site for field measurement
- Use of conventional seismic techniques

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

VELINO VIADUCT TEST SITE:

Velino Viaduct is located in Velino Valley at the border between Umbria and Lazio region

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

GEOLOGICAL SETTING OF TEST SITE:

VELINO VIADUCT – SS 79 bis:

Total length 508,00 m

8 piles and 2 abutment

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

GEOPHYSICAL EXPERIMENT:

PRE- SIN- POST- driving measurements

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

GEOPHYSICAL EXPERIMENT :

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

19/11/2015 Pag. 8

1 meter

NOISE MEASUREMENTS (PRE- and POST- DRIVING):

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

NOISE MEASUREMENTS (PRE- and POST- DRIVING):

inferred by seismic measurements

NOISE MEASUREMENTS (PRE- and POST- DRIVING):

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

HVSR RESULTS:

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

HORIZONTAL SPECTRUM ROTATE RESULTS:

Sensor at 4 m from pile

Sensor at 24 m from pile

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

CO-DRIVING MEASUREMENTS:

DRIVING OF 18 PILE

SENSOR AT 3 – 6 – 12 – 24 m FROM DRIVING PILE

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

DATA PROCESSING:

MANUAL PICKING ON P-WAVES

Sensors distance from the pile (m)	Dt (s) (pile 13)	Dt (s) (pile 18)
3	0	0
6	-	0,037
12	0,056	-
24	0,076	0,066

TIME DELAY

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

DROMOCHRONES:

Vs(18)=162 m/s

[+24%]

Vs(13)= 130 m/s

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

CONCLUSION (I):

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

CONCLUSION (II):

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

CONCLUSION (III):

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements

CONCLUSION (IV):

The conventional seismic techniques have allowed to identify the effects induced by pile driving in the proximity of the investigated zone:

- Liquefaction of 6 m in sands due to pile-driving: increase of impedance contrast within the first 10 m below ground level in the short-period;
- Increasing of the P-Waves velocity due to the soil densifications during the pile-driving, up to 12 m from the driven pile.

If more measurements within 10 m from the driven piles had been available, the volume of densified soil could be better recognized.

THANKS FOR YOUR ATTENTION

Evidences of effects induced by pile driving in alluvial soils inferred by seismic measurements